RATIONAL THERMODYNAMICS OF A NONREACTING
BINARY LINEAR FLUID*

I. Samohyl UDC 536.7

The methods of nonlinear thermomechanics of continuous media are used for an analysis of
transfer phenomena in binary fluid mixtures. From the derived relations, as a special case,
are then deduced fundamental relations for the thermodynamics of irreversible processes to
describe transfer phenomena in binary mixtures.

An attempt is made in this article to demonstrate how the classical problem of irreversible thermo-
dynamics can be solved by the method of so-called rational thermodynamics. This method is based on a
critical review of continuum physics according to Prof. Truesdell's school of thought [1-5]. The scope of
this method is very broad: in principle, it can render an interpretation of irreversible processes in any
material,

Using the example of a nonreacting binary fluid mixture with a certain linearity characteristic, we
will show that this method yields all the results known from the theory of irreversible thermodynamics
{see also [8-14] and, especially, [15-19]).

Characteristic of rational thermodynamics is an a priori definition of fundamental concepts (includ-
ing the thermodynamic concepts [2-T]);

t is time; x is the radius vector of space coordinates; v, is the velocity of component o (o = 1,
2) of the mixture; p,, is the density (weight concentration) of component o, py > 0; T is the
temperature, T > 0; p, is the partial internal energy of component o; s, is the partial entropy 1)
of component o; J is the thermal flux; k, is the momentum source in component « originating
in the other component; T, is a partial tensor of stresses in component a; F, is the external
force per unit mass of component «; and o is the increase in entropy.

On the basis of the concept of a mixture as a superposition of one-component substances [1], we im~-
pose on these quantities the following restrictions expressed in terms of conservation postulates (with re-
spect to a volume V with a surface Q defined in space coordinates [1, 3, 20, 21}:

a. conservation of mass, referred to component o (of a nonreacting mixture)

d - 9
— dV = — v, -dQ, 2)
dt g Pa jpa *

14 £

b. conservation of momentum, referred to component o

—>

L N X PV, (vy-dS) + f T,.d3+ ( o F dV + j k,dV, 3)
dt v o bt _) 14 v

*Rational thermodynamics, in the author's view, is part of the linear thermomechanics of continuous me-
dia. This new trend in the theory of transfer phenomen is a very progressive one and represents a further
development in the thermodynamics of irreversible processes. In featuring this article here, the editors
wish to acquaint the readers with some interesting specific results which the author has obtained in his work
on the theory of transfer in a binary mixture using the methods of continuum thermomechanics (see A. B.

Lykov [32-35], Russian editor's note).
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with
Nk, =0 )
2

(for brevity, z means $‘)

c. conservatlon of the moment of momentum, referred to a mixture component (this restricts us to
nonpolar materials [5])

i (X< a)dV-«—YXXpa v, dD)J—S‘xx(T 40y Y(x,xpaFa)dV+S(xxka)W )
Q » 1 v ‘

(conservation of these quantities referred to an entire mixture involves a summation with respect to all
components, with (4) taken into account).

d. conservation of energy in the mixture (no energy transfer by radiation is assumed to occur)

1 2
%gE (paua+ —2—pava)dV=- VZ (paua
Y e e
’l""l_pocvgfa) Va'd§+'§2va'(Ta'd§) + s‘Epath'vadV“SJ'dé; (6)
2 s D P

e. ‘Second Law of Thermodynamics

d . . s n J >
R vV — — 0,8V dQ — | — . dQ -+ \ odV, (@)
L[ Yt == [ B v [

v

Q  * Q 1
with
6> 0. (8)
These equations of balance differ from those used in {15-191].

By well known operations, these postulates are transformed to the following local terms:

from (2) we obtain the equation of mass continuity for component ¢

o, , =
—2 4y eV = 0; 9
o TV Pave) ®)

from (5) and (3) we obtain the symmetry of partial stress tensors

r.~1, o
and, with the aid of this equation, we obtain from (3)
a -
a (pa a) [ V (pav Qv ) - V- Z:a + pu,Fa + k(x (11)

(the symbol ® denotes a diad).

Transforming (6) to local terms and eliminating the kinetic energy with the aid of (11), we obtain the
First Law of Thermodynamics

4 py (7 a)+2v(pau va)—ET V8V, — V- I—Ek Vo | (12)

(the symbol : denotes summation over both tensor indices). Finally, (7) and (8) yield the Clausius—Duhem

inequality
i) -y > -> J
= 2: — 2 . -[—=—)>»0. 13
o - ot (pasa) + - \Y (pasava) =+ \% ( T ) 7z ( )

With F,, assumed known and « defined according to Eq. (13) (from now on we will use only the inequality
in (13)), while k, and three components of tensors T, are defined according to Eqgs. (9) and (10), the nine
remaining equations (9), (11), (12) are not sufficient for defining the 31 unknowns:
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T, Ogs Ugr S 3 Voo K, Ty (symmetrical) (14)

—-

as functions of x andt. This is understandable, inasmuch as the general equations considered so far do
not express the specific properties of the material.

These properties appear in the defining equations for an ideal material, i.e., a model which simu-
lates the given real material with emphasis on the properties that are important under conditions of con-
cern here [1-7]. For a formulation of the defining equations, it would be very appropriate to use the gen-
eral and lucid axioms of continuum thermomechanics [1, 2, 7].

For our linear binary fluid mixture we will postulate the 22 necessary defining equations in the fol~
lowing way [15, 18, 19]: the quantities
Uy Sq» J, klv Ta (15)

-

are functions of the following independent variables:

T, 01, 0o VT VP1, VO» Vi, Vo VOV VOV, (16)

and linearity of vector and tensor quantities is postulated in the sense that the defining equations for (15)
are polynomials of not higher than first degree with respect to components of vectors and tensors (16) (they
may be arbitrary functions of scalars in (16)).

In this formulation we have already used some axioms of continuum thermomechanics. According
to the axioms of causality and determinism, the variables in the defining equations should reflect past and
present motion (deformation) of the material as well as past and present temperature fields, and the vari-
ables (16) meet this qualification (it is characteristic of a fluid, in fact, that its deformation can be ex-
pressed only in terms of the density p,, [3, 7, 11, 13, 16, 18]). The history is reflected here only in the
velocities and their time derivatives (memory axiom [7]), and the influence of only the immediate vicinity
is reflected in the spatial gradients (locality axiom). All structural equations for (15) contain the same
variables (16) (simultaneity axiom).

These defining equations for (15)-(16) can be substantially simplified as a consequence of the objec-
tivity axiom [1, 2, 3, 7], which states that a property of a material does not depend on the motion of the
observer, i.e., that the defining equations must be invariant with respect to any translation of the origin,
to any rotation and reflection of space coordinates (during any even nonuniform motion of the observer),
and also with respect to the beginning of the time count. Without going into detail, we will only present the
results. The objectivity axiom must be applicable (i.e., objective must be) especially the independent
variables in the defining equations. This matches with the absence of the nonobjective quantities x and t
among those in (16) (their inclusion here would be expected as a consequence of the causality axion), while
the quantities in (15) ~cjepend on those variables only through the quantities in (16). The nonobjective quan~
tities in (16) v, and V ® v, must appear in the following objective combinations [15]: in the diffusion rate
of component 1 relative to the velocity of component 2

Vi, =2 vy — vy, (17)
in the partial tensor of strain rates
L. s
dy o= - VBV, + VOV, (18)
and in
T~ T
Q= —= WOV, — v &Yy — (VBYV, — VOV, (19)
Thus, the defining equations for (15) are expressed as functions of the variables
T, 01 Py V1 V0p VT Vigy diy doy Qo (20)

linear with respect to the components of four vectors, two symmetric tensors, and one antisymmetric ten-
sor (by virtue of (17), (18), and (19), the linearity with respect to vectors and tensors in (16) is main-
tained).

The objectivity axiom has most influence on the form of the defining equations [2, 7]. The invar-
iance with respect to rotation and reflection of coordinates requires that all scalar, vector, and also
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(symmetric) tensor functions in (16) be isotropic. Such functions of variables (20), linear with respect to
vector and tensor components, have the form [22, 23]:

Uy = Oy, -+ Duyfrd, + By trd,, | &

S = s, + D frdy + s frds, .

J = —-’KVT — Vlz + §1VP1 + Ezgpz’ (23)

ky = — oy 9T — PV, -+ €13V0; -+ £1,V0,, (24)

L=~ P+ DU + 3 )
B

where @, g =1, 2, all the coefficients Ouy, Py, @u,, Osy, Wsy, D, %, 4, &, &, o, b1 Erp
€1z Mg gaB, P, are (arbitrary) functions of T, p;, and py, where U is the unit tensor and 9—.8 is the non-
divertive tensor of strain rates in component g of the mixture.

The admissibility axiom states that the defining equations must correspond to the conservation pos-
tulates (9), (11), (12), and the Clausius—Duhem inequality (13) under all possible deformations of the ma-
terial and distortions of the temperature field. 'This is the gist of the powerful Coleman—Hall method 4],
which leads up to rational thermodynamics [2, 3, 6], We insert (12) into inequality (13) and obtain

9 ;) gy KV
- ‘5‘ (g pa-fa) — g V'(pafavm) kl v12 T VT

—

-~ / or | -
—_ E (pasava)'vT - (2 Pmsa. ) 7 e E Z:tx . V®Va >/ 0! (26)
. o . -3 . @
where the following definition of partial free energy in a component « ,
Fo == 1, — Ts,. ’ (27)

has been used. In inequality (26) we replace the corresponding quantities by their defining expressions (21)-
(22) and, after lengthy transformations, we obtain an unwieldy inequality of the following form:

2 CiZi -+ E bJ'Y' -+ Z blelYk + 2 ame + z anp nX + 2 alle X Xt i 2 buvwx vaw \/ 0’ (28)
i i k1 m np 7.8t u,0,w
where Zi, Yj, and Xy denote 9T/t otrd / ot, and components of the following vectors and tensors _75(trd ).
Vpa, VT, dg» v, respectively. Coeff1c1ents ¢i» by Pkils Pyyws %ms dnps and apgt are functions of T, py,
and p, only.
The Coleman—Hall method {4] is based on the following theorem: in order that inequality (28) be
satisfied under all possible deformations of the material and distortions of the temperature field, i.e.,

at all possible values of the independent variables Z;, Y X (any real values) and p,, py, T (only positive
values), it is necessary and sufficient that all coefflctents

¢ =b; = by = @y = Gy = by, = 0 ) (29)
be equal to zero and the remaining quadratic form be positive-semidefinite,

The sufficiency part of this theorem is obvious (a semidefinite form retains its sign for any real Xp),
while the necessity part of it is demonstrated by the existence of such real Zj, Yj, X for which the sense
of inequality (28) changes when any coefficient in (29) is not zero.

The final results of applying this theorem are as follows:

Wy, = @y, =0, (30)
s, = @5 =0,
El = §2 = Or (31)
af, af,
& = Py 05)21 ) €9 = M 6912 ) (32)
o _ (33)
oT
o - _&L 4
Mo = Ta P (34)
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and the remaining quadratic form

To = BV + OVig VT + —= VT Y Y Gan ) (rd) = 3 Y 2o df > 0 (35)
T N - # - - % 3 — -
is positive-semidefinite so that for the coefficients (functions of T, py, p,) we have
B >0, x>0, (36)
X 1
2 Lgso (37)
B T >
1
M >0, myp >0, MNaaMze — T (e + M)* > 0, (38)
1
Cn >0, C‘zz >0, Cnsz - _4— (le + C21)2 > 0. (39)
In (30)-(39) we have used the following definitions: free energy of the mixture
o
entropy of the mixture
5= 2 WSy (41)
22

density of the mixture p and weight fraction w, of component o
¥ __ b QU
=X wm i X

chemical potential of component o

_ opf
Mo == apa (42)
and
3 (3‘
=0y - ———-?,, — 0 ‘—al; - — 0151 (43)

The sign ~ above a symbol indicates that the respective quantity is a function of T, py, and p,. Indeed,
by virtue of (30), (21), and (22), all quantities (27), 40), (41), (43), and (32) are functions of these three
variables only.

Thus, in the final form, the defining equations become

iy :'&a (T, p1s o) (44)
S, = ga(T, 01, 0) {45)
with the property (33), (34)
J=— "_V‘T — le_z’ (46)
- . of, ~ ofy = =
ky = —oyyT — B1Vy, -+ 0, 6{321 Vb1 — 0 _0_:;1’_ Vs (47)

Coefficients », v, «,, B are functions of T, p,, p, and satisfy (36), (37).

The defining equations (25) remain unchanged, where ¢,z and nep satisfy (38), (39) and are func-
tions of T, py, py. This is true also for P o+ Which may be ca led the partial pressure of component « and
is related to the thermodynamic quantities through Eq. (34).

Let us focus our attention on the thermodynamic relations (33), (34), 27), 40), 41), 42), 44), 45)
only and supplement them with the following definitions:

pressure of the mixture
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specific volume of the mixture

v= 1 , (49)
p
specific free enthalpy
g=f-+ Py, (50)
partial specific volume of component «
1 P
U, = — 2 51
* Py P (61)
specific internal energy of the mixture
u= 2 Wlle, (52)
[
partial specific enthalpy of component o
ha =U, + Pva' (53)
specific enthalpy of the mixture
h= 2 Wyl (54)
o

Obviously, all these and the subsequent quantities are functions of T, p;, and p, only.

Next, by various transformations of these formulas, we obtain the well known thermodynamic struc-
ture. We note the relations

g = Ewav‘ow (55)
&
and (34), which becomes
g = ia - va (56)
v= YW, o Epmvac = 1. (57)
Less known is the formula
ofs
Pa = ;‘papﬁ _apa . (58)
From (33) and (34) we obtain
d(ofy = —psdT - Y #ed0y, (59)
o .
where the differential operator d may stand for 8/6t, —V’, or the substantial derivative
D. g. N

Expression (59) can be easily transformed into the well known Gibbs equations

d(pu) = Td(ps) + ¥, BodPe (61)

du = Tds — Pdv -+ (ny — 1) dwy. (62)

The last equation and relation (55) yield the Gibbs—Duhem equation for the chemical potential:

—sdT + vdP — Y wydp,, = 0. (63)
@

If quantities ug, h,, Vg, Sy foz’ Ky are denoted by the symbol y ., and the corresponding quantities u, h,
v, s, f, g are denoted by y, then obviously
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Y =Y @eYo (64)

(o7

Yo = !70; (T, 01, P2 Yy = !;(T, 01 0o)- _ (65)

Assuming the existence of the inversion P =vf>(T, Py Po) = 13(T, wy/v, (1—w,)/v), we can use the con-
ventional variables T, P, w; (functions of these variables are denoted by the sign A). Thus, (65) yields

Yo =1, (T, P, w), y=y P, ). (66)

Despite the complete identicity between this structure and that of classical thermochemistry, there
is the following discrepancy between them: the quantities y, (except u,,) do not satisfy the Gibbs—Duhem
equation, unless the following additional constraint is imposed on the quantities y:

Yo, Lo o (67)
ow,

o

It appears, however, that such an additional constraint (67) can always be introduced without any mod-
ification of the preceding expressions, if to the variables t, x, vy, pys T, Fg, ofrom (1) are added the

new variables u',, s\, J', k!, T,,, which differ from the remaining ones in (1) by arbitrary functions
o o S

@
ty = ty(T, o1, 09, 85 = 5(Ts 01y 03) (68)

as follows: '
Uy ==ty + w?zzo, Uy == Uy — Wyl (69)
S{ =28 - @S, Sy E= 8y — WSy, - (70
"a= 8 Tenwaos Vo, (71)
K==k, — v (@afy), K=Kk, - v (@wof,), (72)
Ti=Ty + @wpf) U, To=T, — @yl U, (73)

where |

fo ==ty — Ts,. (74)

Indeed, if these definitions are used in the original equations 4), (11), (12), and (13) (Eq. (9) is not
changed), then the form of these equations will remain the same also and the concepts on which the defining
equations have been based will remain in force so that all results remain the same, if the corresponding
quantities are replaced by dashed quantities (69)-(73). Some quantities will change accordingly, namely

P = P, —ww,of,, P:= P, wwof, (75)
Y= @l Uy = Yo Eill (76)
where y, in (68) and (74), v, = —f/P, and hy = uy + Pvg, py = 0.
On the other hand, most quantities remain unchanged: P, Reys & and all y's.

The arbitrariness in the choice of functions (69)-(73) is physically obvious, as these quantities can-
not be read directly (this would involve difficulties, for example, in determining the thermal flux).

We will not take advantage of this arbitrariness, in order to reach full agreement with classical ther-
mochemistry., Namely, we select functions u;, s, (we denote them by y;) so that
o . 9%

Yy = w - w,
Yo 1 o, : G, (77)

(yy is u,y and s,). With the aid of such functions (77), quantities y, (defined in (69), (70)) acquire the
necessary property (67) and the same can be said about the remaining quantities £, vy, h,.

Thus, our y, quantities may be considered to have the property (67) (here and later on we omit the

dash in our notation) and it can be easily shown that
oy
Ow,

=Y1— U (78)

and the Gibbs—Duhem equations
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3y 3y .
%Y _ar ——dP—Euumdy =0 7
ar T e o T (79)

are then satisfied for all y's, including p, (see (63)).

A consequence of property (67) are also the formulas

O '
S = S, 80
pr= o (80)
62
s @

We thus have a full agreement with the structure recently developed in the theory of irreversible ther-
modynamics [24, 25] and, as will be shown in the subsequent equilibrium analysis, in complete agreement
with the structure of classical thermochemistry, since the quantities y, with the property (67) represent
partial specific quantities (analogs of partial molar quantities). Definition (51) may be regarded as a gen-
eralization of Dalton's Law (in an ideal gas p, v, represents a molar fraction [25]).

Equilibrium in rational thermodynamics must be defined as a special kind of state, since it does not
follow from the postulates introduced here. Herein lies the gist of the main difference between this and
other theories where the concept of equilibrium is always valid, at least implicitly. In the subsequent defi-
nition of equilibrium we strive toward an agreement with properties usually expected under equilibrium con-
ditions. It is required, first of all, that during equilibrium the change in entropy be zero:

¢=0 (82)
at all positive values of T, py, and p,.
This corresponds to the minimum.of the function ¢ = E(X1, ..., Xyg) (see the left-hand sides of (35)
and (28), (29)), while the necessary conditions of a.minimum are- '
ds .
rale 0 (83)
and the matrix
0%
W » (84)

is positive-semidefinite. This matrix is identical to the square matrix in (35), except for the coefficient
2/T. If only the positive-definite matrix (84) is considered, then (83) yields the following conditions for
equilibrium:

Vn = 07 (85)
VT =0, (86)
g0 &)

which represent the expected equilibrium property (no diffusion, zero temperature gradient, and zero strain
rate tensors). The restriction to a positive-definite matrix (87) represents an additional constraint on the
definition of equilibrium (in addition to the inherent constraint (82)), since otherwise the determinant of
matrix (84) would be equal to zero and the required results (85)-(87) would not be obtained.

Let us insert conditions (85)~(87) into the defining equations. The thermodynamic defining equations
(44) and (45) do not change and, therefore, the entire thermodynamic structure remains unchanged, This
factually proves the postulate of local equilibrium for our linear mixture of fluids. From the defining
equation (46) we find that '

J=0,- (88)

i.e., at equilibrium the thermal flux is zero, from Eq. 47) we find that

of, = of, =
k1 = pgTs}:j— VoL — 0 aFf): VO, (89)
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at equilibrium, and from the defining equation (25) we find that
T, = —P,U, (90)

« =
-

i.e., at equilibrium stress becomes pressure.

For equilibrium, the fundamental conservation equations (9), (11), (12), and (13) reduce respectively

to
Doy _ g, (91)
Dt
[ _I_)D_‘tf_ = - —‘Pa + paFa + kw (92)
%;— —0, (93)
%?t- —0. (94)

(expression (60) as well as kinematic relations between (9) and derivatives with respect to time, as in {1,
21], have been used in these transformations). Summation over all components yields

Dp
20, (95
i . )

and (92) can be transformed (with the aid of (89), (4), (58), and (34)) into

Dv =~
P '_D-t“ = pu.Foc — PVl (96)
from where, with a summation and the aid of (49), (86), and (63), we obtain
Dv -
Y e —vP + 2 [N 97)

As the results (91), (93)~(97) seem still not precise enough, we introduce an additional constraint on
the definition of equilibrium, namely one stating that at equilibrium in a given location there occurs no vari-
ation with time:

— G:_Qu_“-:ﬂj—:o, —(—?lzo (98)

ot ot ot 3 ot

00, ds,

We have thus defined equilibrium by the constraint (82) with the additional constraints (98) and of a
positive-definite matrix (84). A consequence of this definition are conditions (85)-(90) and the following
relations (derived from (91), (93)~(97) after appropriate transformations):

v-yp, =0, (99)

vys, =0, (100)

vy, = 0, (101)
v-(V®V)® = F, — Y, (102)
pv-(V®V) = 3 p,F, — VP, (103)

o
where (VQV)? = (1/2)[$®v—$®v] is the spin tensor,
From this equation we obtain well known cases of equilibrium, such as equilibrium in a field of cen-

trifugal forces when F, = 0, equilibrium in a field of external forces when v = 0, and, most important, a
homogeneous equilibrium system when F, = 0 and the velocity gradients are zero.

Thus, in the last case we have (in addition to (85)-(88) and (90), from (89) and (99)-(103)):

VP = V8o = Vg = Vitg = VPy = 0 (104)
andk = 0, i.e., a homogeneity of properties in this system, inasmuch as the homogeneity property is
logically invariant with respect to changes in velocity v.
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In a volume V of a homogeneous system at equilibrium we may let

the mass of component « be

My, == 04V, (105)
the mass of the mixture be
m==pV (106)
and the quantity Y
Y =my, (107)

representing the internal energy U, the entropy S, the enthalpy H, the free energy F, the free enthalpy G,
and the volume V which correspond to the specific quantities of the mixture y(u, s, h, f, g, v).

Using (66) and

ma
w, =2, m= 2 my, (108)
o
we obtain
Y = my(T, P, w)=Y (T, P, m;, m,). (109)

Differentiating functions Y and using (108), (64), (78) (we emphasize that Eq. (78) is satisfied under
the additional constraint (67)) yields

oF o
am, ¥ om, (110)

and it has thus been proved that in a homogeneous system at equilibrium y;, y, coincide with the partial
specific quantities which in a classical thermochemistry are defined (in molar units) as the left-hand sides

of Egs. (110).
It follows from (109) (see, for instance, (80), (81)) that
o Y
or  or’ oP or

It is now clear that we have obtained here the entire structure of classical thermochemistry for a homo-
geneous system at equilibrium (Gibbs equation, Gibbs—Duhem equation, ete.).

-

oy vy

(111)

It seems that the definition of equilibriuﬁ needs to be further elaborated, since the additional con-
straints (98) and of a positive-definite matrix (84) are not sufficiently justified. On the other hand, we have
not used here the typical property of equilibrium stability (see M, E. Gurtin [26, 3]).

Finally, we compare these results (see also {15-19]) with those of irreversible thermodynamics [27-
30]. Within the scope of this presentation, we have proved the postulate of local equilibrium. It is to be
noted that this postulate does not apply in the general case (monlinearity [15]), but rational thermodynamics
can be used successfully for analyzing all these cases.

The defining equations 46), (47), and (25) here are linear in form, with coefficients which are func-
tions of T, py, p, only and satisfy the Curie postulate. In order to explain this better, we take the diffusion
current p;V,, of component 1 (referred to the velocity of component 2) from the defining equation 47), ex-
press k; in terms of the balance equation (11) with (4), (58), (34), and (25) as

’_I:a = — [Pa_l{ -} _{Ia] (112)
(g denotes the tensor of partial friction), the isothermal gradient of chemical potential
Vil == Vil — aTI vT (113)
and relation (80) (assuming, of course, that 8; # 0), so that
of Tp, ( Y ) =
— oV, = —4X S g — A InT, (114)
P1Vis B, + B, T \'
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where the diffusion motive force is defined as

=~ 1 = 1 dlpyy) | 1 =
X = —F, + —g.I0, 4 — 4+ —v-(0,v, ®V,). (115
1=V — B+ vl o = v e OV )
Inserting (114) into (46) yields
T U [xr+ﬂ-(3——ﬂ)J§?mr. (116)
B, P \ T '

Relations (114), (115), and (116) coincide exactly with the expressions derived by the conventional method
of irreversible thermodynamics [31], when starting out from the same equations of balance [21]. In ex-
pressions (114) and (116) the motive forces X, and VInT have phenomenological coefficients which are func-
tions of T, py, and p, only. .

It is interesting to note in (114) and (116) that the Onsager relations, which so far not yet been de-
rived by the method of rational thermodynamics, are valid in our case under the simple assumption that

9 = 0. (117)

This is not precluded by (37) and, furthermore, one of the additional constraints on equilibrium namely that
of a positive-definite matrix (84), will be justified (see (36), (37)), if friction is disregarded ( dg = 0) with
the logical assumption that g; > 0 and ny > 0. This again confirms the possibility of a relation between the
Osnager relations and the equilibrium properties (see the note on page 114 in {3]).

In conclusion, we would like to repeat Truesdell's statement [3] that the term "rational thermodynam-
ics" denotes only a new approach to the description of thermodynamic phenomena (it does not imply that
some other approach is irrational). In fact, this is true thermodynamics and what we usually call ther-
modynamics is really thermostatics. In irreversible thermodynamics one uses the results of thermostat-
ics and this is what, in principle, restricts the scope.

We endeavored to demonstrate that (rational) thermodynamics in the extreme case contains the re-
sults of reversible thermodynamics, but in addition to that very special case it can, in principle at least,
describe the behavior of any material under any conditions.

The author thanks Academician A. V. Lykov, member of the BSSR Academy of Sciences and Prof.
L. S. Kotousov for their interest in this study and for their valuable assistance in preparing the manu-
script and the printed text, and also Dr. P. Vonka for his discussion.
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